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Abstract A study is undertaken to investigate an analytical solution for the
N-dimensional Schrödinger equation with the Morse potential based on the Laplace
transformation method. The results show that in the Pekeris approximation, the radial
part of the Schrödinger equation reduces to the corresponding equation in one dimen-
sion. In addition, a comparison is made between the energy spectrum resulted from
this method and the spectra that are obtained from the two-point quasi-rational approx-
imation method and the Nikiforov–Uvarov approach.
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1 Introduction

The vibration and rotational movements of the diatomic molecules are topics of
research in a wide range of scientific fields including molecular physics and astro-
physics [1]. However, these areas are considered to be the main tools for other dis-
ciplines such as biology and environmental science [2,3]. One of the most available
methods to describe the vibration of the diatomic and even polyatomic molecules is
the Morse potential [4]. The rotation of molecules presents independently with the
centrifugal potential and involves the quantum number of the angular momentum,
namely �.
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Solutions of the Schrödinger equation for the sate � = 0 has been found in [4–6].
However, due to complexity of the case � �= 0, the wave equation can only be solved
by using perturbation and approximation. The most employed estimation to solve the
equation is the Pekeris method [5,7]. This method is suitable for obtaining the local
solutions of the equation, when the range of the nuclear distance is not far from its
equilibrium position. Moreover, this method induces some restriction on the upper
limit of the quantum number �.

A number of methods have been proposed to solve the Schrödinger equation with
the Morse potential for � �= 0 case, among which are the factorization scheme [8–10],
the path integral formulation [11–13], the super symmetry approach [14–18], the alge-
braic way [19–24], the power series expansion [25–27], the two-point quasi-rational
approximation method [28,29], the 1/N expansion procedure [30–33], the transfer
matrix method [34–36], the asymptotic iteration method [37–39] and Nikiforov–
Uvarov approach [40,41].

One of the most effective methods for solving the Schrödinger equation with dif-
ferent sort of spherically symmetric potentials is the Laplace transformation method
[42]. The advantage of this method is that a second order differential equation reduces
to a first order differential equation. It was Schrödinger who used this technique for
the first time in quantum physics in order to solve the radial eigenfunction of hydrogen
atom, [43]. The method has become commonly employed ever since to solve various
kind of the spherically symmetric potentials [44–50].

The Laplace transform method also has been applied to solve the one dimensional
Schrödinger equation with the Morse potential, when � = 0, by Chen [47]. In the
proposed procedure the exact bound state solutions are obtained in an effective manner.
The present paper attempts to solve the radial Schrödinger equation for the Morse
potential in the Pekeris approximation with the Laplace transform method, in three
and then in N dimensions.

This paper is organized as follows: in section two the Pekeris approximation is
reviewed. In section three the bound state solutions in three dimensions are obtained.
In this section it is shown that the three-dimensional Schrödinger equation with the
Morse potential can be reduced to the corresponding equation in one dimension. As a
result, its exact solutions can be achieved by the Laplace transformation method of [47].
Furthermore, a comparison is made between the resulted energy spectrum and those
spectra that are obtained by using the two-point quasi-rational approximation method
and the Nikiforov–Uvarov approach. In section four the procedure is generalized to an
arbitrary dimension N and the bound state solutions of the N-dimensional Schrödinger
equation for the Morse potential are found. Finally, section five presents the results.

2 Schrödinger equation for Morse potential with rotation correction

The time independent Schrödinger equation for an arbitrary potential V (r) is given by

−h̄2

2m
∇2ψ(r) = [E − V (r)]ψ(r). (1)
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For spherical symmetric potential, the wave function ψ(r) can be separated as [25]

ψ(r) = 1

r
R�(r)Y �m(θ, φ). (2)

Substituting Eq. (2) in Eq. (1), the equation for the radial wave function becomes

−h̄2

2m

[
d2

dr2 − �(�+ 1)

r2

]
R�(r) = [E� − V (r)]R�(r). (3)

For the Morse potential [4,5], this equation can be written as follows

{
d2

dr2 − �(�+ 1)

(r + 1)2
− 2m

h̄2 r2
0

[
D(e−2αr − 2e−αr )− E�

]}
R�(r) = 0, (4)

where

r = r − r0

r0
, (5)

and r0 is the equilibrium position of molecules. The parameter D describes the depth
of the potential and the dimensionless parameter α characterizes the potential acting
range.

From the classical point of view, the nuclear distance r even for high fluctuation
levels, will not oscillate significantly far from the equilibrium distance r0. Hence it
is reasonable that r = | r−r0

r0
| � 1. This allows to expand 1

(1+r)2
of the centrifugal

potential term in Eq. (4), in the form

1

(1 + r)2
= 1 − 2r + 3r2 − 4r3 + · · · , (6)

and considering its first few terms. Up to order r3, this expansion can be replaced by
[5]

1

(1 + r)2
∼= C0 + C1e−αr + C2e−2αr , (7)

since the power series expansion of the later relation yields the former, with the fol-
lowing definitions

C0 = 1 − 3/α + 3/α2, C1 = 4/α − 6/α2, C2 = −1/α + 3/α2. (8)

Substituting Eq. (7) into Eq. (4), the Schrödinger equation (4) becomes

(
d2

dr2 − η2e−2αr + 2ζ 2e−αr − β2
1

)
R�(r) = 0, (9)
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Fig. 1 The centrifugal term for
different values of α versus the
relative distance r
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1 = −2mr2

0

h̄2 E� + �(�+ 1)C0,

ζ 2 = 2mr2
0 h̄2

D
− �(�+ 1)

2
C1,

η2 = 2mr2
0 h̄2

D
+ �(�+ 1)C2. (10)

Equation (9) is the three-dimensional Schrödinger equation for the Morse potential
in the Pekeris approximation.

It is noticeable that the validity of the approximation (7) depends on the order of
magnitude of the relative distance r and likewise by considering Eq. (8), the strength
of the parameter α. In order to justify the fitness of the L.H.S and the R.H.S of Eq. (7)
for different magnitude of r and strength of α, these terms are plotted in Fig. 1 where
the solid line corresponds to the centrifugal term 1/(1+r)2 without the factor �(�+1),
the other lines show (C0 + C1e−αr + C2e−2αr ) for different strength of α. According
to the figure, by increasing of α the approximation (7) would be correct in smaller
domain of r . In the worst case, namely for I2, at r = 0.15 the relative discrepancy
is only about 0.0136. Please note that the validity of the Pekeris approximation also
depends on the magnitude of the rotational quantum number �. In fact the relative
discrepancies are multiplied by the factor �(�+ 1). Therefore it can be concluded that
the Pekeris approximation is not reliable for higher values of �.

3 Bound state solutions in three dimensions

Considering only the fluctuation modes, that is the case � = 0, the radial Schrödinger
equation has been solved in [47] via Laplace transforms. The more general case � �= 0
contains the rotational energies in addition to the vibrational modes, and the corre-
sponding radial Schrödinger equation reduces to Eq. (9). This section shows that by
following the procedure of [47], the eigenvalues and eigenfunctions of this case can
be obtained via Laplace transforms.
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First, a new variable is defined as

y = 2η

α
e−αr . (11)

By applying this new variable in Eq. (9), the following equation results

(
y2 d2

dy2 + y
d

dy
− 1

4
y2 + κ

2
y − β2

)
R�(y) = 0, (12)

where

κ = 2ζ 2

ηα
, β = β1

α
. (13)

In order to have finite solutions at the limit y → ∞, one should take the following
ansatz

ψ�(y) = y−β R�(y), (14)

which transforms Eq. (12) into

(
y2 d2

dy2 − (2β − 1)
d

dy
− 1

4
y + κ

2

)
ψ�(y) = 0. (15)

The last equation is the same as the one that has already been obtained in [47]
for the case � = 0. But by appropriate transformations this can be applied to the
case � �= 0. Hence by following the same procedure, the solutions of Eq. (15) can
be found via Laplace transforms. By applying Laplace transform F(s) = L(ψ) =∫ ∞

0 e−syψ�(y)dy, [42], to Eq. (15), the following equation can be obtained

(
s2 − 1

4

)
d

ds
F(s)+

[
(2β + 1)s − κ

2

]
F(s) = 0, (16)

which is a first order differential equation and its solutions are in the form

F(s) = N

(
s + 1

2

)−(2β+1)
(

1 − 1

s + 1
2

)[κ−(2β+1)]/2
, (17)

where N is a constant. Here

(
1 − 1

s+ 1
2

)κ−(2β+1)

is a multi-valued function. In order

to have a single valued wave function we impose the condition

κ − (2β + 1) = 2n, n = 0, 1, 2, 3, . . . . (18)
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Now considering Eqs. (10), (13) and (18), the eigenvalues of the bound states can
be obtained as

Enl = h̄2

2mr2
0

[
�(�+ 1)C0 − α2

(
n + 1

2
− ζ 2

ηα

)2
]
, (19)

where the parameters ζ, η are given by Eq. (10). This bound state energy spectrum is
the same as the spectrum obtained in [40] by using Nikiforov–Uvarov approach. Also
for � = 0 this eigenvalue relation is reduced to the relation obtained in [47].

In order to find the eigenfunctions, we should apply inverse Laplace transforms to
Eq. (17). However to do so, it needs to be expanded in power series. Following the
method of [47] the normalized eigenfunctions can be achieved as

R�n(y) = Nn y
κ
2 −(n+ 1

2 )e−y/2 Lκ−2n−1
n (y). (20)

Lβn are generalized Laguerre polynomials and Nn is given by

Nn =
[
αn!(κ − 2n − 1)

�(κ − n)

]1/2

. (21)

The proposed solutions are based on the Perkeris approximation and their validity
related to the magnitude of the quantum number �. Let us now make a comparison
between the calculated eigenvalues Eq. (19) and the results of the two-point quasi-
rational approximation method [28,29]. This method is an extension of Padé procedure
and is reliable even for high rotational and vibrational quantum numbers. This com-
parison is made via Fig. 2 for three vibrational levels n = 0, n = 1 and n = 2 of H2
molecule. In this figure the solid line shows the eigenvalues obtained from Eq. (19)

with α = 1.4405, h̄2

2mr2
0

= 7.5416 × 10−3ev and D = 4.7446 ev. The dashed lines

present the eigenvalues obtained from [29]. It is evident from the figure that there is a
noticeable concurrence between two methods approximately for � ≤ 24. By increas-
ing the vibrational quantum number n, the coincidence is elongated to smaller values
of �. Specifically the coincidence for n = 0, n = 1 and n = 2 can be seen up to

Fig. 2 Energy eigenvalues
versus rotational quantum
number �
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� = 28, � = 26 and � = 24, respectively. Fig. 1 also demonstrates that the worse
concurrence occurs for I2 molecule, while a better concurrence is resulted for HC1
molecule.

4 Bound state solutions in N dimensions

The procedure of the preceding section for solving the schrodinger equation with the
Morse potential, can be generalized to any given arbitrary dimension N . The time
independent Schrödinger equation in N dimension can be written as follows

−h̄2

2m
∇2

Nψ(r) = [E − V (r)]ψ(r) (22)

where V (r) is an arbitrary potential. In the presence of a spherical symmetry potential,
the wave equation Eq. (22) is known to be separable and can be written as follows
[51–54]

ψ(r) = r−(N−1)/2 R�(r)Y ��N−2,...�1
(r̂) (23)

where Y ��N−2,...�1
(r̂) are generalized spherical harmonics. Here r̂ is the unite vector in

N dimension and is supposed to be characterized with (N − 1) angular coordinates.
Using Eq. (23) in Eq. (22), the Schrödinger equation for the radial part R�(r) becomes

−h̄2

2m

[
d2

dr2 − λ2 − 1
4

r

2]
Rλ(r) = [Eλ − V (r)]Rλ(r) (24)

where

λ = �− 1 + N

2
. (25)

Applying the Morse potential, Eq. (24) takes the following form

{
d2

dr2 − λ2 − 1
4

(r + 1)2
− 2m

h̄2 r2
0

[
D(e−2αr − 2e−αr )− Eλ

]}
Rλ(r) = 0 (26)

where the variable r is defined in Eq. (5). Using expansion (7) with definitions (8),
Eq. (26) can be written as

(
d2

dr2 − η2
N e−2αr + 2ζ 2

N e−αr − β2
1N

)
Rλ(r) = 0. (27)

Here the parametersηN , ζN andβ1N are analogue to, respectivelyη, ζ andβ defined
in three dimensional case in Eq. (10), and are given asfollows

123



1126 J Math Chem (2014) 52:1119–1128

β2
1N = −2mr2

0

h̄2 Eλ +
(
λ2 − 1

4

)
C0,

ζ 2
N = 2mr2

0

h̄2 D − 1

2

(
λ2 − 1

4

)
C1,

η2
N = 2mr2

0

h̄2 D +
(
λ2 − 1

4

)
C2. (28)

The form of Eq. (27) is exactly similar to Eq. (9) and Hence the solutions of
the former equation can be obtained via the method of the latter one. Following the
procedure of the last section the bound state energy spectrum can be found as

Enλ = h̄2

2mr2
0

⎡
⎣(
λ2 + 1

4

)
C0 − α2

(
n + 1

2
− ζ 2

N

ηNα

)2
⎤
⎦ , (29)

with

n = 0, 1, 2, 3, . . . . (30)

Also the corresponding normalized wave functions can be obtained as

Rλn(y) = Nn y
κN
2 −

(
n+ 1

2

)
e−y/2 LκN −2n−1

n (y). (31)

Here the parameter κN = 2ζ 2
N

ηNα
and y = 2ηN

α
e−αr and Lβn are generalized

Laguerre polynomials. Considering Eq. (23) the normalization condition is given as∫ 1
αy |Rλn(y)|2dy = 1. Applying this normalization condition and using the integrals

of Laguerre polynomials, the normalization constant Nn can be found as follow

Nn =
[
αn!(κN − 2n − 1)

�(κN − n)

]1/2

. (32)

As an example Fig. 3 shows the solutions for eigenfunctions and eigenvalues in
seven dimension.
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Fig. 3 The eigenvalues and eigenfunctions solutions in seven dimensions for hydrogen atom and with
� = 0 and λ = 5/2
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5 Conclusions

This study has found an analytical solution for the energy spectrum and wave func-
tions of the Morse problem in arbitrary dimension based on the Pekeris approxima-
tion and following [47], by using the Laplace transforms. The obtained solutions in
three dimensions are exactly coincides with the results of [40] which are attained
by Nikiforov–Uvarov approach. This paper shows that the results can be justified by
comparing the calculated energy spectrum with those obtained via the two-point quasi-
rational approximation method. This comparison in fact was undertaken to validate
the Pekeris approximation which is the basis of the proposed procedure. Nevertheless,
the results show that this approximation is not valid for high values of quantum num-
bers n and � except at very low separation distances. Despite this fact the procedure
represented in this paper is effective and succinct in its approach, and does not have
the complexities of parallel methods. Finally, this method can be generalized in order
to include higher dimensions of space.
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